Security Analysis of PRINCE

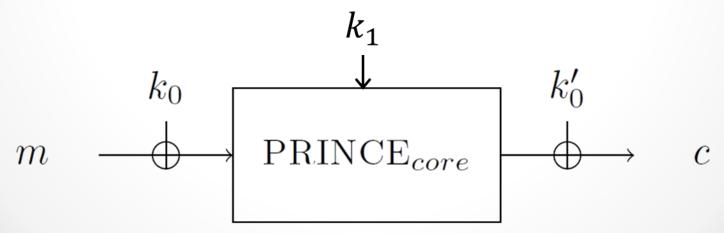
Jérémy Jean, Ivica Nikolić, Thomas Peyrin, Lei Wang, <u>Shuang Wu</u>

École Normale Superieure, France Nanyang Technological University, Singapore

FSE 2013

Singapore – March 11, 2013

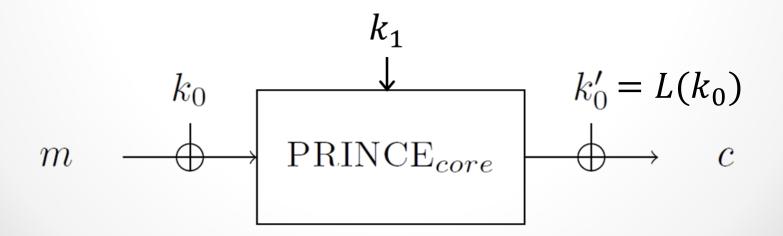
- What is PRINCE
 - A lightweight block cipher published at ASIACRYPT 2012
 - Based on Even-Mansour-like and more importantly FX construction
 - 128-bit key, 64-bit data



Specification of PRINCE

• Key expansion:

- $k = (k_0 || k_1) \rightarrow (k_0 || k'_0 || k_1), \, k'_0 = L(k_0)$
- $L(x) = (x \gg 1) \oplus (x \gg 63)$



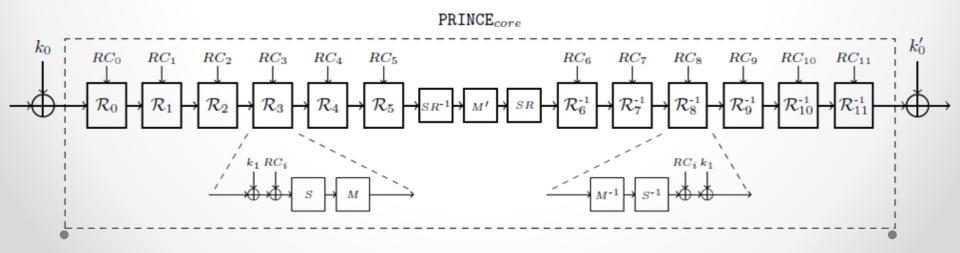
Specification of PRINCE

- 12-round SPN structure in PRINCE_{core}
- Symmetric construction

• Round constants are related $RC_i \bigoplus RC_{11-i} = \alpha = 0xc0ac29b7c97c50dd$

 $\circ \alpha$ -reflection property

$$D_{k_0||k'_0||k_1}(\cdot) = E_{k'_0||k_0||k_1 \oplus \alpha}(\cdot)$$



Claimed Security of PRINCE

 \circ Single-key attack: 2^{127-n}

- When 2^n queries are made
- Related-key attack: No bound claimed
 - Only a trivial related-key distinguisher is given

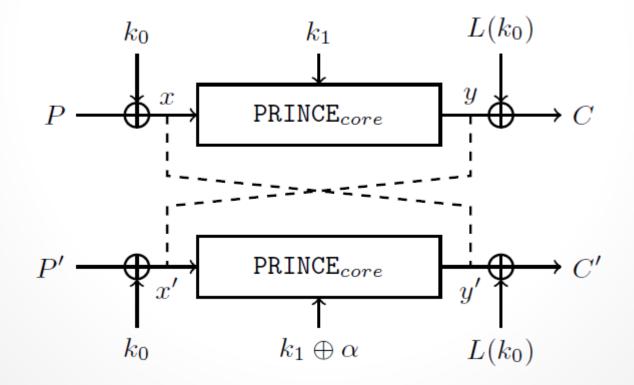
Our Results

- Related-key Attacks on Full PRINCE
- Single-key Attack on $\mathsf{PRINCE}_{\mathsf{core}}$ with chosen- α
- Single-key Attack on Full PRINCE with $2^{126.47-n}$
- Integral Attack on 6 rounds
- Time-Memory-Data Tradeoffs

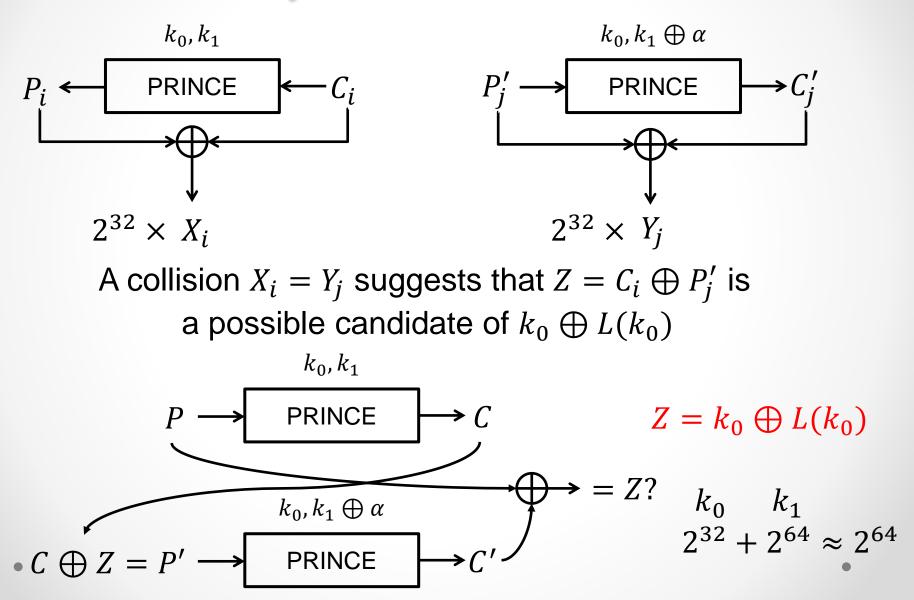
Related-key Attacks on full PRINCE

•
$$k = (k_0 || k_1), k' = (k_0 || k_1 \oplus \alpha)$$

• **Property 1**. Let $C = PRINCE_k(P), C' = PRINCE_{k'}(P')$. $C \bigoplus P' = k_0 \bigoplus L(k_0) \Rightarrow C' \bigoplus P = k_0 \bigoplus L(k_0)$



Related-key Attacks on full PRINCE

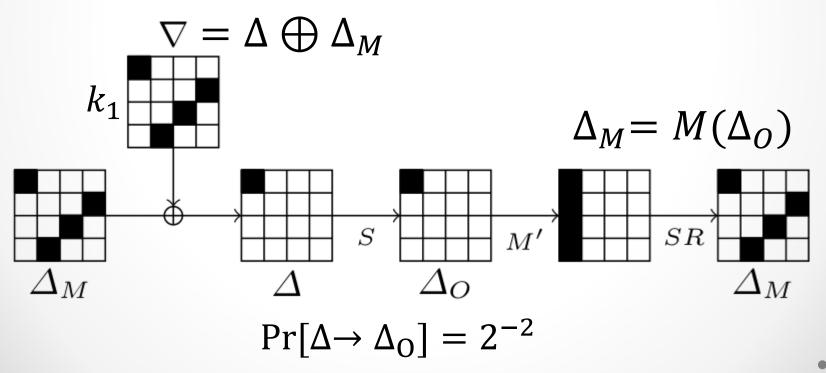


Our Results

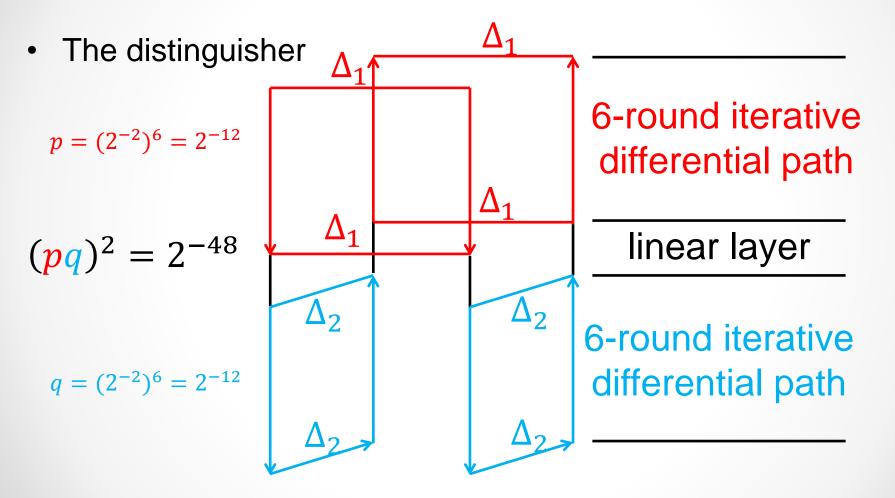
- Related-key Attacks on Full PRINCE
- Single-key Attack on $\mathsf{PRINCE}_{\mathsf{core}}$ with chosen- α
- Single-key Attack on Full PRINCE with $2^{126.47-n}$
- Integral Attack on 6 rounds
- Time-Memory-Data Tradeoffs

Related-key Boomerang Attack on PRINCE core

 Property 2. For the S-box of PRINCE, optimal inputoutput differences holds with probability 2⁻²



Related-key Boomerang Attack on PRINCE_{core}

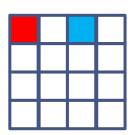


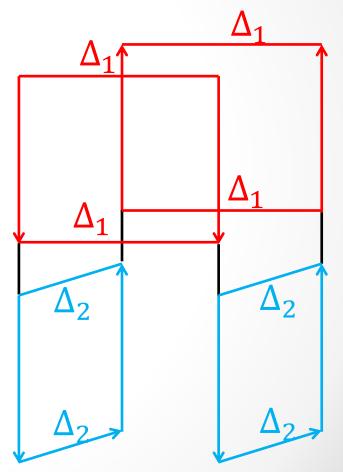
Experimental probability (amplified) $\approx 2^{-36}$

Related-key Boomerang Attack on PRINCE_{core}

Key recovery

- Choose distinct difference positions in Δ₁ and Δ₂
- Find 8 boomerang quartets to cover all the 16 nibbles in the key
- Complexity: 8 · 2³⁶ time and chosen data

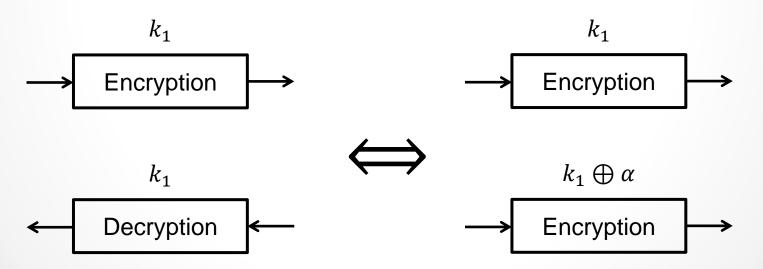




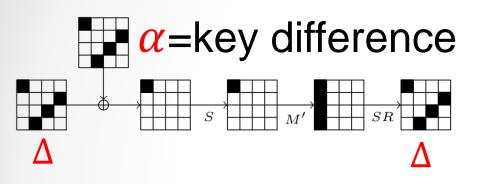
Single-key Attack on PRINCE_{core} with chosen- α

- The α -reflection property
 - In single-key attack, the decryption oracle can be used as related-key encryption oracle

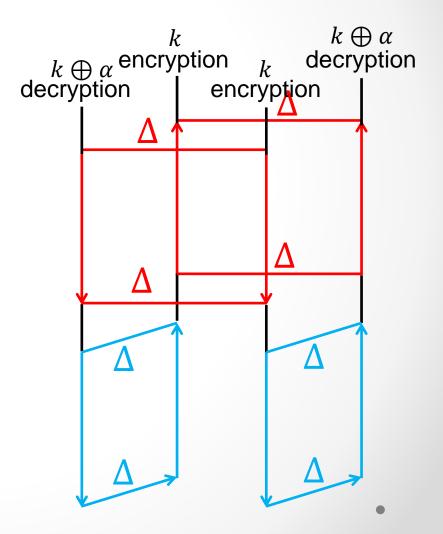
$$D_{k_1}(X) = E_{k_1 \oplus \alpha}(X)$$



Single-key Attack on PRINCE_{core} with chosen- α



Related-key boomerang attack chosen α Single-key attack



Single-key Attack on PRINCE_{core} with chosen- α

- Key differences have to be the same in the top and bottom paths
 - \circ Amplified probability becomes 2^{-40}
- Cannot choose position of the active nibble
 o Fixed by the chosen value of *α*
 - Can only recover a single nibble of the key
- Need 2 boomerang quartets to determine the value of the key nibble

 $_{\odot}$ Complexity $2\cdot2^{40}$ to recover one nibble

There are 240 possible choices for α
 The α chosen by the designers is not in the 240 values

Our Results

- Related-key Attacks on Full PRINCE
- Single-key Attack on $\mathsf{PRINCE}_{\mathsf{core}}$ with chosen- α
- Single-key Attack on Full PRINCE with $2^{126.47-n}$
- Integral Attack on 6 rounds
- Time-Memory-Data Tradeoffs

Single-key Attack on Full PRINCE with $2^{126.4-n}$

• Linear relations with probability of 1 \circ From FX construction $E_{k_0||k_1}(P) = E_{k_0 \oplus \Delta||k_1}(P \oplus \Delta) \oplus L(\Delta)$ or $D_{k_0||k_1}(C) = D_{k_0 \oplus \Delta||k_1}(C \oplus L(\Delta)) \oplus \Delta$ \circ From the α -reflection property $D_{k_0||k_1}(C) = E_{k_0||k_1 \oplus \alpha}(C \oplus k_0 \oplus L(k_0)) \oplus k_0 \oplus L(k_0)$

Single-key Attack on Full PRINCE with $2^{126.4-n}$

- (P, C) is a known plaintext-ciphertext pair
- One offline computation to test 4 keys:

$$\circ E_{\boldsymbol{k_0}||\boldsymbol{k_1}}(P) = C'$$

$$\circ$$
 If $\delta = C' \oplus C ≠ 0$, let

 $X = L^{-1}(P \oplus C \oplus k_0), Y = P \oplus C' \oplus L(k_0),$

obtain the other three equations:

 $E_{k_0 \bigoplus L^{-1}(\delta) || k_1} (P \bigoplus L^{-1}(\delta)) = C$ $D_{X || k_1 \bigoplus \alpha} (C) = C' \bigoplus L(k_0) \bigoplus L^{-1}(P \bigoplus C \bigoplus k_0) = P?$ $E_{Y || k_1 \bigoplus \alpha} (P) = P \bigoplus k_0 \bigoplus L(P \bigoplus C' \bigoplus L(k_0)) = C?$

Single-key Attack on Full PRINCE with $2^{126.4-n}$

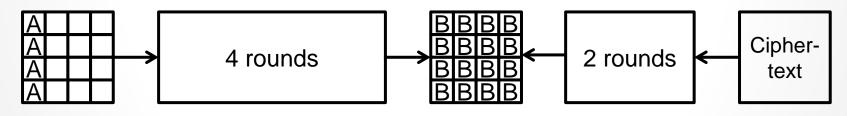
- Speeding up the key recovery
 - \circ One query: Time complexity 2^{126.47}, Claimed bound 2¹²⁷
 - \circ Two queries: Time complexity 2^{125.47}, Claimed bound 2¹²⁶
- A proven new bound
 - \circ With 2^{*n*} data, the bound is 2^{126.47-n}

Our Results

- Related-key Attacks on Full PRINCE
- Single-key Attack on $\mathsf{PRINCE}_{\mathsf{core}}$ with chosen- α
- Single-key Attack on Full PRINCE with $2^{126.47-n}$
- Integral Attack on 6 rounds
- Time-Memory-Data Tradeoffs

Integral Attack on 6 rounds

- 6-round integral attack
 - Similar technique as in original SQUARE attack
 - 4-round integral path
 - 2-round guess of key nibbles

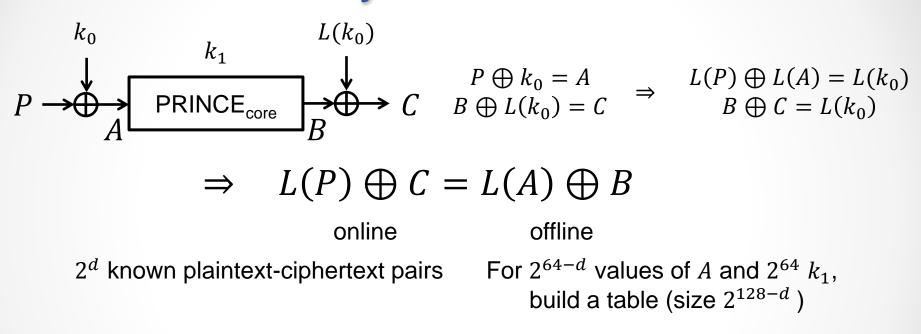


Guess part of the key

Our Results

- Related-key Attacks on Full PRINCE
- Single-key Attack on $\mathsf{PRINCE}_{\mathsf{core}}$ with chosen- α
- Single-key Attack on Full PRINCE with $2^{126.47-n}$
- Integral Attack on 6 rounds
- Time-Memory-Data Tradeoffs

A Memory-Data Trade-off



$$N = 2^{128}, P = 2^{128-d}, M = 2^{128-d}, T = 2^{64}, D = 2^{d}$$

$$DM = N, T = N^{1/2}, M > N^{1/2}$$

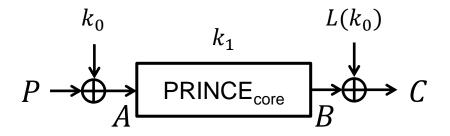
Time-Memory-Data Trade-offs

• Hellman's trade-off $\circ t$ tables with $m \times t$ sizes $N = 2^n, T = t^2, M = mt$ $TM^2 = N^2$

• Built for given plaintext A

Time-Memory-Data Trade-offs

Build Hellman's table for chosen values of A



 $T(MD)^2 = N^2 N^{1/2}$ better than Hellman's TO when $D > N^{1/4}$

Hellman's single table trade-off

 $TMD = NN^{1/2}$ better than Hellman's TO when $D > M/N^{1/2}$

Summary

Cipher	Rounds	Data	Time	Memory	Technique
PRINCE	4	2 ⁴	2 ⁶⁴	24	Integral
	5	$5\cdot 2^4$	2 ⁶⁴	2 ⁸	Integral
	6	2 ¹⁶	2 ⁶⁴	2 ¹⁶	Integral
	12	2 ¹	$2^{125.47}$	negl.	Single-Key
	12	2 ³³	2 ⁶⁴	2 ³³	Related-Key
	12	$MD = N, T = N^{1/2}$			Memory-Data Trade-off
	12	$T(MD)^2 = N^2 N^{1/2}$			Time-Memory-Data Trade-off
	12	$TMD = NN^{1/2}$			Time-Memory-Data Trade-off
PRINCE _{core}	4	24	2 ⁸	24	Integral
	5	$5\cdot 2^4$	2 ⁶⁴	2 ⁸	Integral
	6	2 ¹⁶	2 ⁶⁴	2 ¹⁶	Integral
	12	2 ³⁹	2 ³⁹	2 ³⁹	Related-Key Boomerang
	12	2 ⁴¹	2 ⁴¹	negl.	Single-Key Boomerang, Chosen α

Thank you for your attention!