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Introduction 

• What is PRINCE 
o A lightweight block cipher published at ASIACRYPT 

2012 

o Based on Even-Mansour-like and more importantly 

FX construction 

o 128-bit key, 64-bit data 



Introduction 

• Specification of PRINCE 
o Key expansion: 

• 𝑘 = (𝑘0| 𝑘1 → (𝑘0||𝑘0
′ ||𝑘1), 𝑘0

′ = 𝐿 𝑘0  

• 𝐿 𝑥 = 𝑥 ⋙ 1 ⊕ (𝑥 ≫ 63) 
 

= 𝐿(𝑘0) 



Introduction 
• Specification of PRINCE 

o 12-round SPN structure in PRINCEcore 

o Symmetric construction 

o Round constants are related 

𝑅𝐶𝑖 ⊕𝑅𝐶11−𝑖 = 𝛼 = 0𝑥𝑐0𝑎𝑐29𝑏7𝑐97𝑐50𝑑𝑑 

o 𝛼-reflection property 

𝐷𝑘0||𝑘0
′ ||𝑘1

⋅ = 𝐸𝑘0′ ||𝑘0||𝑘1⊕𝛼(⋅) 

 



Introduction 

• Claimed Security of PRINCE 
o Single-key attack: 2127−𝑛 

• When 2𝑛 queries are made 

oRelated-key attack: No bound claimed 

• Only a trivial related-key distinguisher is 

given 



Our Results 

• Related-key Attacks on Full PRINCE 

• Single-key Attack on PRINCEcore with chosen-𝛼 

• Single-key Attack on Full PRINCE with 2126.47−𝑛 

• Integral Attack on 6 rounds 

• Time-Memory-Data Tradeoffs 



Related-key Attacks on full PRINCE 

• 𝑘 = (𝑘0||𝑘1), 𝑘
′ = (𝑘0||𝑘1 ⊕𝛼) 

• Property 1. Let 𝐶 = 𝑃𝑅𝐼𝑁𝐶𝐸𝑘 𝑃 , 𝐶′ = 𝑃𝑅𝐼𝑁𝐶𝐸𝑘′(𝑃
′). 

𝐶 ⊕ 𝑃′ = 𝑘0 ⊕𝐿 𝑘0 ⇒ 𝐶′ ⊕𝑃 = 𝑘0 ⊕𝐿(𝑘0) 



PRINCE 

𝑘0, 𝑘1 

𝐶𝑖 𝑃𝑖 PRINCE 

𝑘0, 𝑘1 ⊕𝛼 

𝐶𝑗
′ 𝑃𝑗

′ 

𝑋𝑖 𝑌𝑗 232 × 232 × 

A collision 𝑋𝑖 = 𝑌𝑗 suggests that 𝑍 = 𝐶𝑖 ⊕𝑃𝑗
′ is 

a possible candidate of 𝑘0 ⊕𝐿(𝑘0) 

PRINCE 

𝑘0, 𝑘1 

𝐶 𝑃 

PRINCE 

𝑘0, 𝑘1 ⊕𝛼 

𝐶′ 𝐶 ⊕ 𝑍 = 𝑃′ 

= 𝑍? 

𝑍 = 𝑘0 ⊕𝐿(𝑘0) 

Related-key Attacks on full PRINCE 

232 + 264 ≈ 264 

𝑘1 𝑘0 



Our Results 

• Related-key Attacks on Full PRINCE 

• Single-key Attack on PRINCEcore with chosen-𝛼 

• Single-key Attack on Full PRINCE with 2126.47−𝑛 

• Integral Attack on 6 rounds 

• Time-Memory-Data Tradeoffs 



Related-key Boomerang Attack on PRINCEcore 

• Property 2. For the S-box of PRINCE, optimal input-

output differences holds with probability 2−2 

Pr[∆→ ∆O] = 2−2 

= ∆⊕ ∆𝑀 

𝑘1 
∆𝑀= 𝑀(∆𝑂) 



• The distinguisher 

∆2 

∆1 
∆1 

∆1 
∆1 

∆2 

∆2 ∆2 

6-round iterative 

differential path 

6-round iterative 

differential path 

linear layer 

𝑝 = (2−2)6 = 2−12 

𝑞 = (2−2)6 = 2−12 

𝑝𝑞 2 = 2−48 

Experimental probability (amplified) ≈ 2−36 

Related-key Boomerang Attack on PRINCEcore 



• Key recovery 
o Choose distinct difference 

positions in ∆1 and ∆2 

o Find 8 boomerang quartets 

to cover all the 16 nibbles in 

the key 

o Complexity: 8 ⋅ 236 time and 

chosen data  
∆2 

∆1 
∆1 

∆1 
∆1 

∆2 

∆2 ∆2 

Related-key Boomerang Attack on PRINCEcore 



Single-key Attack on PRINCEcore with chosen-𝛼 

• The 𝛼-reflection property 
o In single-key attack, the decryption oracle can be 

used as related-key encryption oracle 

𝐷𝑘1 𝑋 = 𝐸𝑘1⊕𝛼(𝑋) 
 

Encryption 

𝑘1 

Encryption 

𝑘1 ⊕𝛼 

Encryption 

𝑘1 

Decryption 

𝑘1 ⟺ 



𝛼=key difference 

Related-key 

boomerang attack 

Single-key attack 

chosen 𝛼 

∆ ∆ 

∆ 

∆ 
∆ 

∆ 
∆ 

∆ 

∆ ∆ 

encryption 

encryption 

decryption 

decryption 
𝑘 ⊕ 𝛼 

𝑘 ⊕ 𝛼 𝑘 

𝑘 

Single-key Attack on PRINCEcore with chosen-𝛼 



• Key differences have to be the same in the 
top and bottom paths 
o Amplified probability becomes 2−40 

• Cannot choose position of the active nibble 
o Fixed by the chosen value of 𝛼 

o Can only recover a single nibble of the key 

• Need 2 boomerang quartets to determine the 
value of the key nibble 
o Complexity 2 ⋅ 240 to recover one nibble 

• There are 240 possible choices for 𝛼 
o The 𝛼 chosen by the designers is not in the 240 values 

Single-key Attack on PRINCEcore with chosen-𝛼 



Our Results 

• Related-key Attacks on Full PRINCE 

• Single-key Attack on PRINCEcore with chosen-𝛼 

• Single-key Attack on Full PRINCE with 2126.47−𝑛 

• Integral Attack on 6 rounds 

• Time-Memory-Data Tradeoffs 



Single-key Attack on Full PRINCE with 2126.4−𝑛 

• Linear relations with probability of 1 
o From FX construction 

𝐸𝑘0||𝑘1 𝑃 = 𝐸𝑘0⊕∆||𝑘1 𝑃 ⊕ ∆ ⊕ 𝐿(∆) 

       or 𝐷𝑘0||𝑘1 𝐶 = 𝐷𝑘0⊕∆||𝑘1 𝐶 ⊕ 𝐿 ∆ ⊕ ∆ 

o From the 𝛼-reflection property 

𝐷𝑘0||𝑘1 𝐶 = 𝐸𝑘0||𝑘1⊕𝛼 𝐶 ⊕ 𝑘0 ⊕𝐿 𝑘0 ⊕𝑘0 ⊕𝐿(𝑘0) 



• 𝑃, 𝐶  is a known plaintext-ciphertext pair 

• One offline computation to test 4 keys: 
o 𝐸𝑘0||𝑘1 𝑃 = 𝐶′ 

o If 𝛿 = 𝐶′ ⊕𝐶 ≠ 0, let 

𝑋 = 𝐿−1(𝑃 ⊕ 𝐶 ⊕ 𝑘0), 𝑌 = 𝑃⊕ 𝐶′ ⊕𝐿 𝑘0 , 

obtain the other three equations: 

𝐸𝑘0⊕𝐿−1(𝛿)||𝑘1
𝑃 ⊕ 𝐿−1 𝛿 = 𝐶 

𝐷𝑋||𝑘1⊕𝛼 𝐶 = 𝐶′ ⊕𝐿 𝑘0 ⊕𝐿−1 𝑃 ⊕ 𝐶 ⊕ 𝑘0 = 𝑃? 

𝐸𝑌||𝑘1⊕𝛼 𝑃 = 𝑃⊕ 𝑘0 ⊕𝐿 𝑃⊕ 𝐶′ ⊕𝐿 𝑘0 = 𝐶? 

Single-key Attack on Full PRINCE with 2126.4−𝑛 



• Speeding up the key recovery 
o One query: Time complexity 2126.47, Claimed bound 2127 

o Two queries: Time complexity 2125.47, Claimed bound 2126 

• A proven new bound 
o With 2𝑛 data, the bound is 2126.47−𝑛  

Single-key Attack on Full PRINCE with 2126.4−𝑛 



Our Results 

• Related-key Attacks on Full PRINCE 

• Single-key Attack on PRINCEcore with chosen-𝛼 

• Single-key Attack on Full PRINCE with 2126.47−𝑛 

• Integral Attack on 6 rounds 

• Time-Memory-Data Tradeoffs 



Integral Attack on 6 rounds 

• 6-round integral attack 
o Similar technique as in original SQUARE attack 

o 4-round integral path 

o 2-round guess of key nibbles 

4 rounds 

A 
A 
A 
A 

B B 
B B 

B B 
B B 

B B 
B B 

B B 
B B 

2 rounds 
Cipher-

text 

Guess part of the key 



Our Results 

• Related-key Attacks on Full PRINCE 

• Single-key Attack on PRINCEcore with chosen-𝛼 

• Single-key Attack on Full PRINCE with 2126.47−𝑛 

• Integral Attack on 6 rounds 

• Time-Memory-Data Tradeoffs 



A Memory-Data Trade-off 

PRINCEcore 

𝑘1 

𝐶 𝑃 

𝐿(𝑘0) 𝑘0 

𝐴 𝐵 

𝑃 ⊕ 𝑘0 = 𝐴 

𝐵 ⊕ 𝐿 𝑘0 = 𝐶 

𝐿 𝑃 ⊕ 𝐿 𝐴 = 𝐿(𝑘0) 
𝐵 ⊕ 𝐶 = 𝐿 𝑘0  

⇒ 

⇒ 𝐿 𝑃 ⊕ 𝐶 = 𝐿 𝐴 ⊕ 𝐵 

offline 

For 264−𝑑 values of 𝐴 and 264 𝑘1,  

build a table (size 2128−𝑑) 

online 

2𝑑 known plaintext-ciphertext pairs 

𝑁 = 2128, 𝑃 = 2128−𝑑 , 𝑀 = 2128−𝑑 , 𝑇 = 264, 𝐷 = 2𝑑 

𝐷𝑀 = 𝑁, 𝑇 = 𝑁1/2, 𝑀 > 𝑁1/2 



Time-Memory-Data Trade-offs 

• Hellman’s trade-off 
o 𝑡 tables with 𝑚 × 𝑡 sizes 

𝑁 = 2𝑛, 𝑇 = 𝑡2, 𝑀 = 𝑚𝑡 
𝑇𝑀2 = 𝑁2 

o Built for given plaintext 𝐴 

PRINCEcore 

𝑘1 

𝐴 𝐵 



Time-Memory-Data Trade-offs 

• Build Hellman’s table for chosen values of A 

 

 

 

 

 

• Hellman’s single table trade-off 

𝑇 𝑀𝐷 2 = 𝑁2𝑁1/2 

PRINCEcore 

𝑘1 

𝐶 𝑃 

𝐿(𝑘0) 𝑘0 

𝐴 𝐵 

𝑇𝑀𝐷 = 𝑁𝑁1/2 

better than Hellman’s TO when 𝐷 > 𝑁1/4 

better than Hellman’s TO when 𝐷 > 𝑀/𝑁1/2 



Summary 
Cipher Rounds Data Time Memory Technique 

PRINCE 

4 24 264 24 Integral 

5 5 ⋅ 24 264 28 Integral 

6 216 264 216 Integral 

12 21 2125.47 negl. Single-Key 

12 233 264 233 Related-Key 

12 𝑀𝐷 = 𝑁, 𝑇 = 𝑁1/2 Memory-Data Trade-off 

12 𝑇 𝑀𝐷 2 = 𝑁2𝑁1/2 Time-Memory-Data Trade-off 

12 𝑇𝑀𝐷 = 𝑁𝑁1/2 Time-Memory-Data Trade-off 

PRINCEcore 

4 24 28 24 Integral 

5 5 ⋅ 24 264 28 Integral 

6 216 264 216 Integral 

12 239 239 239 Related-Key Boomerang 

12 241 241 negl. Single-Key Boomerang, Chosen 𝛼 



Thank you for your attention! 


