Multiple Limited-Birthday Distinguishers and Applications

Jérémy Jean ${ }^{1}$ María Naya-Plasencia ${ }^{2}$ Thomas Peyrin ${ }^{3}$
${ }^{1}$ École Normale Supérieure, France
${ }^{2}$ SECRET Project-Team - INRIA Paris-Rocquencourt, France
${ }^{3}$ Nanyang Technological University, Singapore

SAC'2013 - August 16, 2013

Open-Key Distinguishers

Block-cipher $E \cong$ family of PRPs $E: \mathcal{K} \times \mathcal{D} \longrightarrow \mathcal{D}$.
Known-key model: introduced by Knudsen and Rijmen in [KR-A07]
Let $\Delta_{I N}$ and $\Delta_{\text {OUT }}$ two truncated differences.

A Known-key Distinguisher

Let K a key and E_{K} the associated permutation.
Find $\left(P, P^{\prime}\right)$ s.t. $P \oplus P^{\prime} \in \Delta_{I N}$ and $E_{K}(P) \oplus E_{K}\left(P^{\prime}\right) \in \Delta_{\text {OUT }}$.

A Chosen-key Distinguisher

Find $K,\left(P, P^{\prime}\right)$ s.t. $P \oplus P^{\prime} \in \Delta_{I N}$ and $E_{K}(P) \oplus E_{K}\left(P^{\prime}\right) \in \Delta_{\text {OUT }}$.

Example: AES

Limited Birthday Algorithm [GP-FSE10]

Conjecture: best generic algorithm to solve the LB problem.

Limited Birthday

What is the generic complexity for mapping i fixed-difference bits to j fixed-difference bits with a random n-bit permutation π ?

Algorithm: sequential applications of the birthday algorithm.
Time complexity: $C(i, j)$ (assuming $i \leq j$)

$$
\log _{2}(C(i, j))= \begin{cases}j / 2, & \text { if: } j \leq 2(n-i), \\ i+j-n, & \text { if: } j>2(n-i)\end{cases}
$$

Our Contributions

■ We add more than one valid truncated differences $\Delta_{I N}$ and $\Delta_{\text {OUT }}$

■ We consider this extended LB problem as Multiple Limited-Birthday

■ We provide the best known algorithm to solve the MLB problem

■ We apply it to several AES-like primitives

Intuitions (1/2)

Obs.: the gap between generic and distinguishing complexities is often big

Rebound-based distinguishing algorithms

- Two phases: inbound (deterministic) and outbound (probabilistic)
- We do not elaborate on the inbound phase
- In the outbound, constrained truncated probabilistic transitions. \Longrightarrow output positions can be relaxed

Probabilistic transition

LB Problem applied to AES

$P_{\text {outbound }}=2^{-40}$

Intuitions (2/2)

Relaxation

- A $t \rightarrow c$ transition leads to $\binom{t}{c}$ possibilities
- The probability is $\binom{t}{c}$ higher

Example

$P_{\text {outbound }}=24 \times 2^{-40} \approx 2^{-35.4}$

Generic Problem

Generic problem

- Relaxing the positions changes the generic algorithm (MLB)
- The algorithm due to [GP-FSE10] is not optimal \Longrightarrow Need to commit to a fixed $\Delta_{I N}\left(\right.$ or $\left.\Delta_{\text {OUT }}\right)$
- We restric ourselves to:
- geometries of square size $t \times t$ (AES: $t=4$),
- n_{B} active diagonals for $\Delta_{I N}$
- n_{F} active anti-diagonals for $\Delta_{\text {OUT }}$

Let $\Delta_{I N}$ be the set of truncated patterns containing all the $\binom{t}{n_{B}}$ possible ways to choose n_{B} active diagonals among the t ones.
Let $\Delta_{\text {OUT }}$ defined similarly with n_{F} active anti-diagonals.

Multiple Limited Birthday (MLB)

Given $F, \Delta_{I N}$ and $\Delta_{O U T}$, find a pair (m, m^{\prime}) of inputs to F such that $m \oplus m^{\prime} \in \Delta_{I N}$ and $F(m) \oplus F\left(m^{\prime}\right) \in \Delta_{\text {OUT }}$.

Lower Bounding the Generic Time Complexity

Lower bound on the time complexity T

- MLB with differences $\left(\Delta_{I N}, \Delta_{\text {OUT }}\right)$ is at least as hard as LB on the equivalent parameters (IN, OUT)
- Indeed, LB is made easier with less constraints and more possible input pairs

$$
C(I N, O U T) \leq T
$$

MLB Example $(t=4, c=8)$

$$
I N=\left(\begin{array}{c}
t \\
n_{B}=1 \\
n_{B}
\end{array}\right)^{c^{c t n} n_{B}}\left\{\begin{array}{c}
\Delta_{1} \\
\Delta_{2} \\
\Delta_{3} \\
\Delta_{4}
\end{array}\right.
$$

Upper Bounding the Generic Time Complexity

Upper bound on the time complexity T

- A first algorithm to solve MLB is based on independent applications of the generic algorithm for $L B$
- Take one random input Δ_{i} of size $\overline{I N}$, and apply $\angle B(\overline{I N}, \underline{O U T})$ until one solution is found

$$
T \leq \min \{C(\overline{I N}, \underline{O U T}), C(\underline{I N}, \overline{O U T})\}
$$

MLB Example $(t=4, c=8)$

Improving the Generic Time Complexity

Bounds

$$
C(\underline{I N}, \underline{O U T}) \leq T \leq \min \{C(\overline{I N}, \underline{O U T}), C(\underline{I N}, \overline{O U T})\}
$$

Our algorithm

- Solves the generic MLB problem with time complexity T
- We conjecture its optimality
- In the sequel, we explain the forward direction
- We compare our time complexities to the lower bound C(IN, OUT)

Data

Notes

- A random pair is a right pair with proba.

$$
P_{\text {out }}=\binom{t}{n_{F}} 2^{-t\left(t-n_{F}\right) c}
$$

- We need (at least) $P_{\text {out }}^{-1}$ pairs at the input
- $D_{1}, \ldots, D_{n_{B}^{\prime}}$ assume $2^{c t}$ values
- D_{0} assume $2^{y}<2^{c t}$ values
- $n_{B}=2, n_{B}^{\prime}=3$

Structure of Input Data

 $D_{0} D_{1} D_{2} D_{3}$

Number of Pairs

$$
\begin{aligned}
N_{\text {pairs }}\left(n_{B}^{\prime}, y\right) & \stackrel{\text { def }}{=}\binom{n_{B}^{\prime}}{n_{B}}\binom{2^{n_{B} c t}}{2} 2^{y} 2^{\left(n_{B}^{\prime}-n_{B}\right) t c} \\
& +\binom{n_{B}^{\prime}}{n_{B}-1}\binom{2^{y+\left(n_{B}-1\right) c t}}{2} 2^{\left(n_{B}^{\prime}-\left(n_{B}-1\right)\right) c t}
\end{aligned}
$$

Then: Solve $\mathbf{N}_{\text {pairs }}\left(\mathbf{n}_{\mathrm{B}}^{\prime}, \mathbf{y}\right)=\mathbf{P}_{\text {out }}^{-1}$ to get $\left(n_{B}^{\prime}, y\right)$.

Online Phase

Online Phase

- Query the $2^{y+c t n_{B}^{\prime}}$ outputs to the permutation π
- Sort them, and:
- check for a valid output pattern
- then, check for a valid input pattern

Time Complexity

$$
2^{y+c t n_{B}^{\prime}}+2^{2\left(y+c t n_{B}^{\prime}\right)-1} P_{\text {out }} \approx 2^{y+c t n_{B}^{\prime}}
$$

Improvements: constant memory with collision-finding algorithms.

AES in the Known-Key Model

AES: 10 rounds, $t=4, c=8$.
AES: Known-Key Distinguisher for 8R

Details

- Super-SBox technique [GP-FSE10]: $\mathcal{S}_{2} \rightarrow \mathcal{S}_{5}=1$ operation on av.
- Total cost: $2^{24} / 4 \cdot 2^{24} / 4=2^{44}$ computations (prev: 2^{48}).
- Lower bound for generic complexity: 2^{61} computations.

Collision on 6-Round AES in Davies-Meyer Mode

Reduced AES: 6 rounds, $t=4, c=8$.

AES: 6-Round Collision in DM

Details

- Technique from [DFJ-INDO12]: $\mathcal{S}_{1} \rightarrow \mathcal{S}_{6}=1$ operation on av.
- Total cost: $2^{24} \times 2^{8}=2^{32}$ computations (position constrained).
- Lower bound for generic complexity: 2^{64} computations.

Improved Distinguisher of Whirlpool CF

Whirlpool: 10 rounds, $t=8, c=8$.
Compression Function (CF): $h(H, M)=E_{H}(M) \oplus M \oplus H$.

Whirlpool: 10-Round Truncated Characteristic

Details

- Inbound from [LMRRS-09]: $\mathcal{S}_{2} \rightarrow \mathcal{S}_{7}=2^{64}$ computations on av.
- Cost outbound: $2^{32} /\binom{8}{4} \times 2^{32} /\binom{8}{4}=2^{51.74}$ computations.
- Total cost: $2^{64} \times 2^{51.74}=2^{115.74}$ computations
- Lower bound for generic complexity: 2^{125} computations.
- Previous: 2^{176} computations - Ideal: 2^{384}.

Conclusion

■ New generic problem for permutations: Multiple Limited-Birthday.
■ Lower and upper bounds.
■ Best known algorithm to solve the MLB problem.

- Applications to AES (proceedings):
- 8R known-key distinguisher in 2^{44} computations.
- 8 R chosen-key distinguisher in $2^{13.4}$ computations.
- 6R collision attack in DM in 2^{32} computations.

■ Applications to Whirlpool (proceedings):

- 10R CF distinguisher in $2^{115.74}$ computations.
- 7.5R CF collision attack in 2^{176} computations.
- 5.5R HF collision attack in 2^{176} computations.

■ More in the extended version: LED, Grøstl, ECHO, PHOTON.

Conclusion

■ New generic problem for permutations: Multiple Limited-Birthday.
■ Lower and upper bounds.
■ Best known algorithm to solve the MLB problem.

- Applications to AES (proceedings):
- 8R known-key distinguisher in 2^{44} computations.
- 8 R chosen-key distinguisher in $2^{13.4}$ computations.
- 6R collision attack in DM in 2^{32} computations.

■ Applications to Whirlpool (proceedings):

- 10R CF distinguisher in $2^{115.74}$ computations.
- 7.5R CF collision attack in 2^{176} computations.
- 5.5R HF collision attack in 2^{176} computations.

■ More in the extended version: LED, Grøstl, ECHO, PHOTON.

Thank you!

Example of the LB on AES

Example: AES, one cell $=8$ bits

$$
i=96
$$

$$
j=96
$$

Application of the algorithm

1. $n=128, i=n-32=96, j=n-32=96$
2. Attacking π is as hard as $\pi^{-1}(i=j)$
3. With one structure of 2^{32} messages:

- collision on 64 bits by the Birthday Paradox
- $96-64=32$ non-colliding bits

4. Repeat Step 32^{32} times (randomize value of non-active bits)
5. Collision on 96 bits with 2^{64} messages and 2^{64} computations

Example: AES-Like Permutation with $t=8$

MLB on This Example

Outbound probability

$$
\binom{t}{n_{B}}\binom{t}{n_{F}} 2^{-c\left(2 t-n_{B}-n_{F}\right)}
$$

Some Time Complexities and Bounds

Bounds

$$
C(\underline{I N}, \underline{O U T}) \leq T \leq \min \{C(\overline{I N}, \underline{O U T}), C(\underline{I N}, \overline{O U T})\}
$$

Time Complexity: Examples

$\left(t, c, n_{B}, n_{F}\right)$	$C(I N, \underline{O U T})$	T	$C(\overline{I N}, \underline{O U T})$
$(8,8,1,1)$	2^{379}	$2^{379.7}$	2^{382}
$(8,8,1,2)$	$2^{313.2}$	$2^{314.2}$	$2^{316.2}$
$(8,8,2,2)$	$2^{248.4}$	$2^{250.6}$	$2^{253.2}$
$(8,8,1,3)$	$2^{248.2}$	$2^{249.7}$	$2^{251.2}$
$(4,8,1,1)$	2^{61}	$2^{62.6}$	2^{63}
$(4,4,1,1)$	2^{29}	$2^{30.6}$	2^{31}

Note: $C(\overline{I N}, \underline{O U T})=\binom{t}{n_{B}} C(\underline{I N}, \underline{O U T})$.

AES in the Chosen-Key Model

AES: 10 rounds, $t=4, c=8$.
AES: Chosen-Key Distinguisher for 8R

Details

- Technique from [DFJ-INDO12] $\mathcal{S}_{2} \rightarrow \mathcal{S}_{8}=1$ operation on av.
- Total cost: $2^{16-\log _{2}\binom{4}{2}}=2^{13.4}$ computations (prev: 2^{24}).
- Lower bound for generic complexity: $2^{31.7}$ computations.

Improved Collision Attack for Whirlpool CF

Whirlpool: 10 rounds, $t=8, c=8$.
Whirlpool: 7.5-Round Truncated Characteristic

Details

- Same inbound from [LMRRS-09].
- We let one more active byte in S_{0} and S_{7}.
- Gain factor: $2^{8} \times 2^{8} \times 2^{-8}=2^{8}$.
- Total cost: 2^{176} computations (prev: 2^{184}).
- Same technique for the 5.5-Round collision attack on the HF.
- Generic complexity: 2^{256} computations.

