# Cryptanalysis of FORK-256

Krystian Matusiewicz<sup>1</sup>, Thomas Peyrin<sup>2</sup>, Olivier Billet<sup>2</sup>, Scott Contini<sup>1</sup> and Josef Pieprzyk<sup>1</sup>

<sup>1</sup>Centre for Advanced Computing Algorithms and Cryptography, Department of Computing, Macquarie University

> <sup>2</sup>Network and Services Security Lab, France Telecom Research and Development

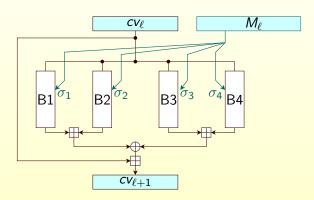
> > FSE 2007, 26 March 2007

#### Talk overview

- ► Short description of FORK-256
- ▶ Micro-collisions in the step transformation
- Simple differential path for the compression function
- General method of finding differential paths
- Collisions for the compression function
  - ▶ The differential path
  - Complexity analysis
  - Improving efficiency using large memory
  - ► Achieving collisions for the hash function
- Conclusions

- ► Short description of FORK-256
- ▶ Micro-collisions in the step transformation
- ▶ Simple differential path for the compression function
- General method of finding differential paths
- ► Collisions for the compression function
  - ▶ The differential path
  - Complexity analysis
  - Improving efficiency using large memory
  - Achieving collisions for the hash function
- Conclusions

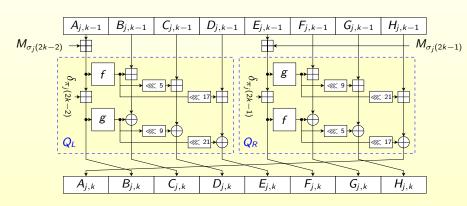
# Structure of FORK-256 :: four parallel branches



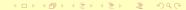
- ▶ 256 bits of chaining variable cv
- ▶ 512 bits of message *M*
- ▶ each branch B1, B2, B3, B4 consists of **8 steps**
- ▶ each branch uses a different permutation  $(\sigma_1, \sigma_2, \sigma_3, \sigma_4)$  of message words  $M_0, \ldots, M_{15}$



# Structure of FORK-256 :: step transformation

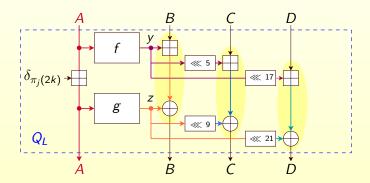


- ▶ there are 8 steps in each branch
- ▶ step transformation composition of 3 simple operations
  - addition of two different message words
  - two parallel Q-structures
  - rotation of registers



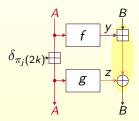
- ▶ Short description of FORK-256
- ► Micro-collisions in the step transformation
- ► Simple differential path for the compression function
- General method of finding differential paths
- Collisions for the compression function
  - The differential path
  - Complexity analysis
  - Improving efficiency using large memory
  - Achieving collisions for the hash function
- Conclusions

#### What is a "micro-collision"?



Micro-collision: a difference in register A does not propagate to the selected register B, C or D.

If it does not propagate to more than one other register we have *simultaneous micro-collisions*.



Let us denote

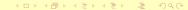
$$y = f(x), \quad y' = f(x') \qquad z = g(x \boxplus \delta), \quad z' = g(x' \boxplus \delta).$$

We have a micro-collision in the first line if the equation

$$(y \boxplus B) \oplus z = (y' \boxplus B) \oplus z' \tag{1}$$

is satisfied for given y, y', z, z' and some constant B.

Our aim is to find the set of all constants B for which (1) is satisfied.



## Three representations of a difference

usual XOR difference:

$$\Delta^{\oplus}(z,z') = (z_0 \oplus z'_0, \dots, z_{31} \oplus z'_{31}) \in \{0,1\}^{32}$$

integer difference:

$$\partial y = y' - y \in \{-2^{32} + 1, \dots, 2^{32} - 1\}$$

singed binary difference:

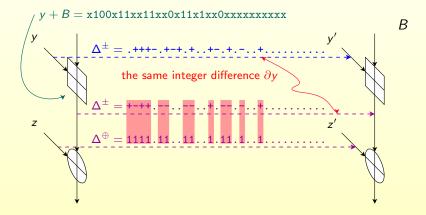
$$\Delta^{\pm}(y,y') = (y_0 - y_0', \dots, y_{31} - y_{31}') \in \{-1,0,1\}^{32},$$

## Two useful relationships between different representations

- ▶ If  $\Delta^{\pm}(y, y') = (r_0, r_1, \dots, r_{31})$  is a signed binary difference, then the corresponding XOR difference is  $(|r_0|, |r_1|, \dots, |r_{31}|)$ .
- ► Having a signed binary difference we can easily recover the (unique) corresponding integer difference:

$$\partial y = \sum_{i=0}^{31} 2^i \cdot \Delta^{\pm}(y, y')_i .$$

#### Finding micro-collisions: The principle



XOR difference  $\Delta^{\oplus} \to 2^{h_w(\Delta^{\oplus})}$  signed binary diffs  $\to 2^{h_w(\Delta^{\oplus})}$  integer diffs  $\to$  one of them must be  $\partial y = y - y'$ 

#### Finding micro-collisions: Necessary condition

To test whether the quadruple (y,y',z,z') may yield a micro-collision we have to check whether there exists a signed binary representation corresponding to  $\partial y = y - y'$  that "fits" into XOR difference  $\Delta^{\oplus}(z,z')$ .

This problem can be reduced to an easy (superincreasing) knapsack problem:

Having a set of positions  $I = \{k_0, k_1, ..., k_m\}$  (determined by non-zero bits of  $\Delta^{\oplus}(z, z')$ ), decide whether it is possible to find a binary signed representation  $r = (r_0, ..., r_{31})$  corresponding to  $\partial y$  s.t.:

$$\partial y = \sum_{i=0}^m 2^{k_i} \cdot r_{k_i}$$
 where  $r_{k_i} \in \{-1,1\}$  .

#### This test can be implemented very efficiently!

```
int micro_possible(WRD y1, WRD y2, WRD dz) {
    WRD tmp, delta_y, sum;
    if (y2 > y1) {
        tmp = y2; y2 = y1; y1 = tmp;
    delta_y = y1 - y2;
    sum = delta_y;
    sum += dz;
    if ( sum < delta_y ) {
        if (dz >> 31) == 0)
            return 0;
    dz <<= 1;
    return ( (dz|sum) == dz );
```

#### Finding micro-collisions: Also a sufficient condition

In fact we can prove that this condition is also sufficient: if we can find such a representation, we can always find constants B that make the difference "fit" into the prescribed XOR pattern.

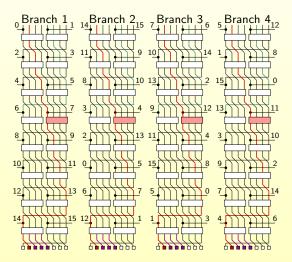
Moreover, the analysis shows that the size of the set of good constants B is equal to

$$2^{32-h_w(z\oplus z')+1}$$
,

with the grey one added if the MSB of  $\Delta^{\oplus}(z,z')$  is one.

- ► Short description of FORK-256
- Micro-collisions in the step transformation
- ► Simple differential path for the compression function
- General method of finding differential paths
- Collisions for the compression function
  - The differential path
  - Complexity analysis
  - Improving efficiency using large memory
  - Achieving collisions for the hash function
- Conclusions

#### Simple differential path using micro-collisions



By introducing differences in  $B_0$  and finding simultaneous microcollisions in four Q-structures in step 4 we obtain a differential restricted to 4 registers.

#### Simple path: complexity analysis

- $\blacktriangleright$  Once we pass through step 4, we can generate  $2^{32}$  pairs,
- ▶ To pass step 4 we have to make a few simple checks for  $2^{32}$  values, altogether equivalent to  $2^{32}/4$  of FORK evaluations, we succeed with probability  $P_d^6$ , where  $P_d$  depends on the difference, for  $d = 0 \times 00000404$  we have  $P_d \approx 2^{-3}$ .
- ▶ the average cost of a single solution  $\approx 1/4 \cdot P_d^{-6} \approx 2^{16}$ .
- ▶ an example of a pair with output difference of weight 22:

| cvn               | 8406e290 | 5988c <u>6af</u>       | 76a1d478 | 0eb60cea | f5c5d865 | 458b2dd1 | 528590bf | c3bf98a1 |
|-------------------|----------|------------------------|----------|----------|----------|----------|----------|----------|
| cv' <sub>n</sub>  | 8406e290 | 5988c <u>ab3</u>       | 76a1d478 | 0eb60cea | f5c5d865 | 458b2dd1 | 528590bf | c3bf98a1 |
| М                 | 396eedd8 | 0e8c2a93               | b961f8a4 | f0a06fc6 | 9935952b | e01d16c9 | ddc60aa4 | 0ac1d8df |
| IVI               | c6fef1d8 | 4c472ca6               | 58d9322d | 2d087b65 | 7c8e1a26 | 71ba5da1 | ba5d2bfc | 1988f929 |
| cv <sub>n+1</sub> | 9897c70a | 4e188 <mark>62d</mark> | b4725ac1 | cfc9f92c | 9aa0637d | ae772570 | 74dd4af1 | cd444dd7 |
| $cv'_{n+1}$       | 9897c70a | 4e188 <u>0f9</u>       | 1e677302 | 4c650966 | f4792bf4 | ae772570 | 74dd4af1 | cd444dd7 |

- Short description of FORK-256
- Micro-collisions in the step transformation
- Simple differential path for the compression function
- General method of finding differential paths
- Collisions for the compression function
  - The differential path
  - Complexity analysis
  - Improving efficiency using large memory
  - Achieving collisions for the hash function
- Conclusions

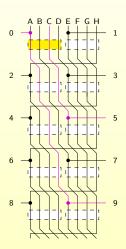
# Finding high-level paths: idea and model

#### Let's be optimistic:

- Assume that we can always avoid mixing introduced by Q-structures (finding micro-collisions is always easy).
- Assume that any two differences cancel each other (i.e. we don't need to worry about many different values, either there is a difference or not and any two differences added together disappear).

#### So now we are in $\mathbb{F}_2$ ...

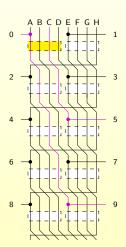
- ▶ The model is  $\mathbb{F}_2$ -linear function  $L_{out}$  that maps input differences in M and  $cv_n$  to output diffs.
- ► We can find the kernel of this map to get the set of all input differences that vanish at the output.



# Finding high-level paths: going back to reality

The more micro-collisions we have to find and the longer the path the smaller probability that differences in the original function will follow the path.

- ▶ We look for paths with as few micro-collisions as possible (a few differences in registers A and E)
- ► Generally, the shorter path the better.
- ▶ Let's look at the registers A and E and pick those input differences S that yield only a few non-zero differences in A and E.
- Optimal paths minimum weight words in a linear code.



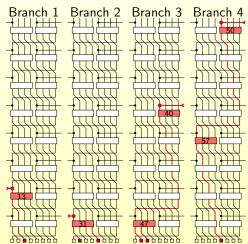
## Finding high-level paths: more general model

So far we assumed that differences in A (or E) do not propagate to any other registers in the Q-structure. We can relax this condition.

For each Q-structure we have  $2^3 = 8$  possible configurations. This gives  $8^{64}$  different models for FORK-256 – more freedom to look for short differential paths.

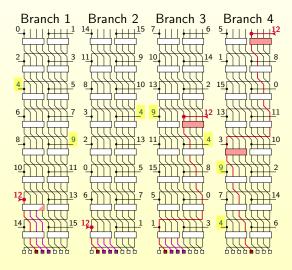
## Example of a path: Collisions for all branches

Differences in  $M_{12}$ . Configuration of Q-structures: 13: $(q_B, q_C, q_D)$ =000, 31:001, 40:000, 47:100, 50:000, 57:000



- ▶ Short description of FORK-256
- Micro-collisions in the step transformation
- Simple differential path for the compression function
- General method of finding differential paths
- Collisions for the compression function
  - The differential path
  - Complexity analysis
  - Improving efficiency using large memory
  - Achieving collisions for the hash function
- Conclusions

# Collisions: The differential path



d = 0xdd080000 or d = 0x22f80000

- ►Using a modified path we need microcolls in only  $3\frac{1}{3}$  *Q*-structures.
- ►Get 3 microcollisions in branches 3 and 4 first.
- ▶Using different values of  $M_4$  and  $M_9$  compute branch 1 and hope there is a single micro-collision in Br. 1 step 7.
- ►Using *d* with only 13 MSB set only 108 bits are affected.

## Collisions: the complexity of getting full collisions

- ► Complexity of finding a single solution: 2<sup>18.6</sup>.
- Now, if the distribution of outputs is close to uniform, we expect to find a collision after testing 2<sup>108</sup> pairs.

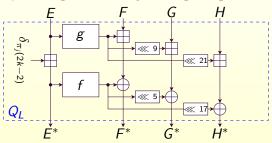
Complexity of finding a collision:  $2^{108} \cdot 2^{18.6} = 2^{126.6}$ .

- ► faster than by birthday paradox
- using only small memory (hash table + stored allowable values: 2<sup>23</sup> 32-bit words in total)
- trivially parallelizable
- practical for obtaining near-collisions

Example of a near-collision for the compression function with weight 28

| Example of a flear-consist for the compression function with weight 20 |          |          |          |          |          |          |          |          |
|------------------------------------------------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|
| IV                                                                     | 6a09e667 | db1bb914 | 3c6ef372 | a54ff53a | 510e527f | 767b0824 | 66410f7d | 90f7ce64 |
| М                                                                      | 85a83e55 | 91d3ca9d | a6c2facb | 027afd32 | 000000cb | 00000000 | 9d4a6aba | 00000000 |
| 101                                                                    | e649c148 | 4606ae35 | 6efb18d8 | 2d6ade8f | 1dcb6936 | ec995db1 | d2ad257b | 730f5bb4 |
| M'                                                                     | 85a83e55 | 91d3ca9d | a6c2facb | 027afd32 | 000000cb | 00000000 | 9d4a6aba | 00000000 |
| 101                                                                    | e649c148 | 4606ae35 | 6efb18d8 | 2d6ade8f | 40c36936 | ec995db1 | d2ad257b | 730f5bb4 |
| diff                                                                   | 00000000 | 8c300000 | 1d010204 | 52520104 | c0908122 | 00000000 | 00000000 | 00000000 |

## Collisions: improving efficiency using large tables



Problem: To what extent can we influence the values of  $E^*$ ,  $F^*$ ,  $G^*$ ,  $H^*$  changing only E?

- ▶ We can set E\* to any value (bijective map),
- For any given pair (G, w) we can *very often* find such E that  $G^* = w$ .
- We can precompute a look-up table T that for any pair  $(G, G^*)$  returns the necessary value of E,  $T(G, G^*) = E$ .

# Collisions: improving efficiency using large tables

- ▶ We can use such look-up tables to significantly reduce the time spent in branch 1
- ▶ Theoretical complexity of finding a single solution: 2<sup>1.6</sup>.

Complexity of finding a collision:  $2^{108} \cdot 2^{1.6} = 2^{109.6}$ .

- $\blacktriangleright$  we improved the speed by the factor of  $2^{17}$ ,
- but we assume we can use huge, fast memory,
- ▶ we use around 512 tables (family parametrized by a), each one of size 2<sup>64</sup> 32-bit words, i.e. 2<sup>73</sup> words of memory in total

# Collisions for the full hash function: principle

- ▶ We can avoid using  $B_0$  in branch 3 either by using look-up tables or by a smarter scheduling in branch 3 we have to have only three IV words  $(F_0, G_0, H_0)$  set to one of the good constants to allow for micro-collisions in step 1 of branch 4.
- ▶ Probability that a random IV has all three values  $(F_0, G_0, H_0)$  acceptable to the algorithm is bigger than  $2^{-3\cdot32}$ , in fact around  $2^{-65}$  for differences 0xdd080000 and 0x22f80000.
- ▶ At the cost of 2<sup>65</sup> FORK evaluations we can find a prefix message block that after the first application of the compression function yields IV suitable for the main part of the attack.

# Collisions for the full hash function: example

- ► For other modular differences this probability is much bigger.
- Using "easier" modular difference we've got near-collisions for the full hash function with Hamming weight 42.

However, this modular difference is not as effective when it comes to solving branch 1.

Example of a near collision for the full bash function with weight 42

|      | Example of a flear-consisting the full flash function with weight 42 |          |          |          |          |          |          |          |
|------|----------------------------------------------------------------------|----------|----------|----------|----------|----------|----------|----------|
| М    | 2d4458a4                                                             | 57976f57 | 3e44cfd9 | 1ab54cb2 | 7ec11870 | 173f6573 | 6141c261 | 7db20d3e |
| 101  | 2feeb74d                                                             | 5fac87a6 | 61a73fa1 | 3454b23d | 451d389b | 78f061ec | 7c32fb06 | 57ef1928 |
|      | 79dcd071                                                             | 39dc97f0 | 3a1bff42 | 031d364c | fef000e6 | 40873ef5 | d0741256 | 649430cf |
|      | 97ef5538                                                             | 3eab6a7e | b4f9cf72 | 9eba8257 | 4e84d457 | 5a6c49b6 | ad1d9711 | 0f69afa2 |
| M'   | 2d4458a4                                                             | 57976f57 | 3e44cfd9 | 1ab54cb2 | 7ec11870 | 173f6573 | 6141c261 | 7db20d3e |
| IVI  | 2feeb74d                                                             | 5fac87a6 | 61a73fa1 | 3454b23d | 451d389b | 78f061ec | 7c32fb06 | 57ef1928 |
|      | 79dcd071                                                             | 39dc97f0 | 3a1bff42 | 031d364c | fef000e6 | 40873ef5 | d0741256 | 649430cf |
|      | 97ef5538                                                             | 3eab6a7e | b4f9cf72 | 9eba8257 | 8df0c460 | 5a6c49b6 | ad1d9711 | 0f69afa2 |
| diff | 00000000                                                             | 83480012 | 32b4070c | 681a1279 | 648600ad | 00000000 | 00000000 | 00000000 |

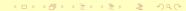
#### Conclusions

We exploited a particular weakness of the step transformation of FORK-256 to cryptanalyse the function. We showed

- how to find micro-collisions efficiently,
- how to look for high-level differential paths,
- how to combine those two steps to produce near-collisions efficiently and evaluated the complexity of getting collisions at 2<sup>126.6</sup> using small amount of memory
- ▶ that using large memory we can find collisions in 2<sup>109.6</sup>,
- how to extend the attack to the full hash function (with predefined IV),
- that using truncated versions of FORK is extremely risky.

You can download our program that finds near-collisions from:

http://www.ics.mq.edu.au/~kmatus/FORK



# Thank you!

# Additional slides [just in case someone asked about details]

# Functions f and g

$$f(x) = x \boxplus (x^{\infty 7} \oplus x^{\infty 22}),$$
  
$$g(x) = x \oplus (x^{\infty 13} \boxplus x^{\infty 27})$$

## Finding micro-collisions

- ▶ We can rewrite  $(y \boxplus B) \oplus z = (y' \boxplus B) \oplus z'$  as  $(y \boxplus B) \oplus (y' \boxplus B) = z \oplus z'$
- ▶ This means that the signed difference  $\Delta^{\pm}(y \boxplus B, y' \boxplus B)$  has to have non-zero digits in those places where  $\Delta^{\oplus}(z, z')$  has ones.
- ► There are  $2^{h_w(\Delta^{\oplus}(z,z'))}$  such signed differences that "fit" into the XOR difference.
- ► They correspond to  $2^{h_w(\Delta^{\oplus}(z,z'))}$  integer differences that may yield a micro-collision
- ▶ Integer difference is not changed by adding the constant *B*!

# Finding high-level paths: example

So now we are in  $\mathbb{F}_2$ ! The whole model is  $\mathbb{F}_2$ -linear function  $L_{out}$  that maps input differences in M and  $cv_n$  to output differences.

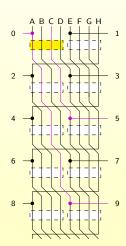
#### Example

Input differences

$$S = (A, B, C, D, E, F, G, H, M_0, \dots, M_9).$$

For

$$S = (0,0,1,0,0,0,0,0,1,0,0,0,1,0,0,0,1)$$
 we have  $L_{out}(S) = (0,0,0,0,0,0,0,0)$ .



#### Results of the search

| Scenario          | Branches | m | Differences in     | active Q-structures          |
|-------------------|----------|---|--------------------|------------------------------|
| Pseudo-collisions | 1,2,3,4  | 5 | $H_0, M_2, M_{11}$ | 12:000, 25:000, 35:001,      |
|                   |          |   |                    | 41:001, 51:010               |
| Collisions        | 1,2,3,4  | 6 | $M_{12}$           | 13:000, 31:001, 40:000,      |
|                   |          |   |                    | 47:100, 50:000, 57:000       |
| Pseudo-collisions | 1,2,3    | 2 | $B_0, M_{12}$      | 8:100, 24:000                |
|                   | 1,2,4    | 3 | $H_0, M_{11}$      | 3:000, 51:010, 60:000        |
|                   | 1,3,4    | 3 | $H_0, M_2$         | 35:001, 44:000, 51:000       |
|                   | 2,3,4    | 3 | $D_0, M_9$         | 36:010, 43:000, 52:000       |
| Collisions        | 1,2,3    | 3 | $M_0, M_3, M_9$    | 1:001, 20:010, 39:100        |
|                   | 1,2,4    | 4 | $M_1, M_2$         | 2:001, 9:000, 25:100, 51:000 |
|                   | 1,3,4    | 5 | <b>M</b> 9         | 10:000, 39:001, 42:001       |
|                   |          |   |                    | 43:010, 59:000               |
|                   | 2,3,4    | 5 | $M_3, M_9$         | 20:010, 27:000, 39:000       |
|                   |          |   |                    | 57:000, 59:010               |

Legend: 47:100 means that the 47-th *Q*-structure is modelled with coefficients  $(q_B, q_C, q_D) = (1, 0, 0)$ .



# Collisions: the principle of the attack

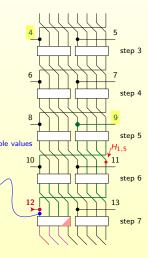
- ▶ Get three micro-collisions in branches 3 and 4. This leaves two message words  $M_{\perp}$  and  $M_{\odot}$  free, the rest is fixed
- ▶ Using different values of  $M_4$  and  $M_9$  compute branch 1 and hope that there is a single micro-collision in strand D in step 7.
- ▶ If a micro-collision there is found, compute the rest of the function and check the output difference.

Note that the output differences have weights always < 108

# Collisions: the complexity of getting close hashes

- Compute internal registers up to 7th step. Then, for each allowable value x, set A<sub>1,6</sub> = x M<sub>12</sub>, get the corresponding H<sub>1,5</sub> and store the result into a hash table T.
- For each value of M<sub>9</sub> compute the corresponding value of H<sub>1,5</sub> and look for a match in T. If there is a match, go to point 3. When all M<sub>9</sub> are exhausted, increment M<sub>4</sub> and go to point 1.
- 3. Check. If current value of  $M_9$  leads to a single allowable values micro-collision in the thread  $D_{1,6} \rightarrow E_{1,7}$  then return  $(M_4, M_9)$ , else continue point 2.

Point 1:  $\eta/64 = 2^{15.7}$  FORK evaluations. Point 2:  $2^{32}/64 = 2^{26}$  FORK evaluations. Since point 3 succeeds with probability  $2^{-24.6}$  we get  $2^{7.4}$  solutions for a work effort of  $2^{26}$ . Per single solution: about  $2^{18.6}$  FORK evaluations.



# Collisions: improving efficiency using large tables

We can use such precomputed tables to speed up the algorithm.

- ▶ In branch 3 we can use one to control the thread  $C_{3,1} \rightarrow D_{3,2}$  through  $M_{10}$
- ▶ In branch 1 we use a family of such tables  $T_a$  for some (best) allowable values a. For a fixed a,  $T_a(G_{1,4}, M_{11} + E_{1,5})$  returns the value of  $M_9$  that gives us  $A_{1,6} = a M_{12}$
- For that allowable value a we get a micro-collision with probability 2<sup>-8</sup> ~ 2<sup>-9</sup>. So after 512 lookups we expect to get a micro-collision.
- ▶ If 1 look-up = 1 op (e.g. ADD) then this takes 1/2 FORK and we have  $\approx 3/2$  FORK per single solution.

