Improved Cryptanalysis of the Reduced Grøst1 Compression Function, ECHO Permutation and AES Block Cipher

Florian Mendel¹, Thomas Peyrin², Christian Rechberger¹, *Martin Schläffer*¹

IAIK, TU Graz, Austria

Ingenico, France

æ

<ロト <回 > < 注 > < 注 > 、

- NIST SHA-3 Competition
 - many design strategies
 - different AES based hash functions
- Improve the cryptanalysis of AES based designs
 - additional degrees of freedom
 - different attack strategies
- Improve the security of AES based designs
 - how far can we go?
 - how much do we need?

▲ 同 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Collision Attacks on Compression Functions

- iterated hash function h(M, IV)
 - compression function $f: H_t = f(M_t, H_{t-1}), H_0 = IV$
- (1) collision:
 - fixed IV
 - $f(M_t, IV) = f(M'_t, IV), M_t \neq M'_t$
- (2) semi-free-start collision:
 - random chaining input
 - $f(M_t, H_{t-1}) = f(M'_t, H_{t-1}), \ M_t \neq M'_t$
- (3) free-start collision:
 - random differences and values of chaining input
 - $f(M_t, H_{t-1}) = f(M'_t, H'_{t-1}), \ M_t \neq M'_t, H_{t-1} \neq H'_{t-1}$
- \Rightarrow increasing degrees of freedom

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

æ

ヘロト 人間 とくほとくほとう

The Advanced Encryption Standard

- state: 4 × 4 bytes
- AES round transformations:
 - $r_i = MC \circ SR \circ SB \circ AK$
 - $r_n = AK \circ SR \circ SB \circ AK$
- AES in known-key setting
 - state update behaves as a permutation

→ E > < E >

< 🗇 🕨

SHA-3 Candidate Grøstl

• Compression function of Grøstl

- permutation based
- AES based round transformations
- no key-schedule inputs

< 🗇 >

→ E > < E</p>

The Grøst1-256 Permutations

• Grøst1-256:

- state: 8 \times 8 bytes for P_{512} and Q_{512}
- different round constants
- I0 rounds each

ъ

ヘロト 人間 ト ヘヨト ヘヨト

- Compression function of ECHO
 - permutation based
 - AES based round transformations
 - no key-schedule inputs

э

▲□ ▶ ▲ 臣 ▶ ▲ 臣

The Round Transformations of ECHO

• ECHO permutation:

- 4 × 4 AES states
- BigSubBytes:
 - 128-bit S-box (two AES rounds)
- 8/10 rounds for ECHO-256/512

æ

・ 同 ト ・ ヨ ト ・ ヨ ト …

F. Mendel, T. Peyrin, C. Rechberger, M. Schläffer Cryptanalysis of Grøstl, ECHO and AES

æ

・ロット (雪) () () () ()

- Truncated Differences [Knudsen, FSE 1994]
 - on bytes: active or not active
- Attack on Grindahl Hash Function [Peyrin, Asiacrypt 2007]
 - truncated differences
 - probabilistic MixColumns propagation
- Rebound Attack [Mendel et al., FSE 2009]
 - truncated differences
 - probabilistic MixColumns propagation
 - match-in-the-middle using S-box

・ 回 ト ・ ヨ ト ・ ヨ ト

Overview of Results

target	rounds	computational complexity	memory requirements	type	section
	6	2 ¹¹²	2 ⁶⁴	semi-free-start collision	[Mendel et al.]
Grøstl-256	6	2 ⁶⁴	2 ⁶⁴	semi-free-start collision	this work
	7	2 ⁵⁵	2 ⁶⁴	permutation distinguisher	this work
FOUD	7	2 ⁸⁹⁶	-	permutation distinguisher	ECHO Specification
ECHU	7	2 ³⁸⁴	2 ⁶⁴	permutation distinguisher	this work
AES	7	2 ⁵⁶	-	known-key-distinguisher	[Knudsen]
AES	7	2 ²⁴	2 ¹⁶	known-key-distinguisher	this work

ヘロト 人間 とくほとく ほとう

Rebound Attack on Grøst1-256

- Inbound phase:
 - (1) start with differences in round r_2 and r_3
 - (2) match-in-the-middle at S-box using values of the state
- Outbound phase:
 - (3) probabilistic propagation in MixBytes of r_1 and r_4
 - (4) match difference at input and output

- < ≣ → <

Previous Results on Grøst1-256

- Semi-free-start collision on 6 rounds of Grøstl-256
 - only one $8 \rightarrow 1$ MixBytes transition
 - birthday match on 16-byte input/output differences
- Complexity of attack: ~ 2¹²⁰

A Linearized Match-in-the-Middle Attack

- (1) Filtering for differential paths
 - using probabilities of SubBytes/ShiftBytes/MixBytes
 - by guess-and-determine with complexity 1
- (2) Solving for conforming state pairs
 - S-box behaves linearly for fixed input/output differential
 - solve linearly with complexity 2⁴⁸ (previously: 2¹¹²)

A Start-from-the-Middle Technique

æ

<ロト <回 > < 注 > < 注 > 、

Results for Grøst1-256 Compression Function

- Find pair following 4-round truncated path
 - complexity 2⁴⁸
- Semi-free-start collision on 6/10 rounds
 - complexity 2⁶⁴, memory 2⁶⁴
- Here: not enough freedom for 7-round collision attack
 - distinguisher on 7/10 rounds (complexity 2⁵⁵)

Results for Known-Key AES

- Using Start-from-the-Middle Technique
- Find pair following 4-round truncated path
 - complexity 2²⁴ (MixColumns)
 - memory 2¹⁶ (S-Box lookup table)
- Known-key distinguisher for 7-round AES

Results for ECHO Permutation

- Using Start-from-the-Middle Technique
- Find pair following 4-round truncated path
 - complexity 2³⁸⁴ (BigMixColumns)
 - memory 2⁶⁴ (SuperBox lookup table)
- Improved distinguisher for 7-round permutation

- The Rebound Attack
 - simple and quick analysis
- This Improved Cryptanalyis
 - two different fine-tuned techniques
 - utilize almost all available degrees of freedom
- Future work
 - squeeze the last out of it
 - proof bounds (degrees of freedom vs. costs for SB/MC)
 - apply to other SHA-3 candidates

・ 同 ト ・ ヨ ト ・ ヨ ト

- The Rebound Attack
 - simple and quick analysis
- This Improved Cryptanalyis
 - two different fine-tuned techniques
 - utilize almost all available degrees of freedom
- Future work
 - squeeze the last out of it
 - proof bounds (degrees of freedom vs. costs for SB/MC)
 - apply to other SHA-3 candidates

Thank you for your Attention!

・ 同 ト ・ ヨ ト ・ ヨ ト