
Improved Heuristics for Short Linear Programs

Thomas Peyrin Quan Quan Tan

Nanyang Technological University

CHES 2020



Contributions of this paper:

A new algorithm that finds good implementations of linear
systems, to reduce the number of XOR gates/operations.

Our algorithm performs better than the state-of-the-art (Paar
and Boyar-Peralta algorithms), we tested on existing and also
random matrices.



Diffusion Matrices

Figure 1: Figure inspired from [Jea16]


2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

 ·

w0

w1

w2

w3

 =


2 · w0 ⊕ 3 · w1 ⊕ w2 ⊕ w3

w0 ⊕ 2 · w1 ⊕ 3 · w2 ⊕ w3

w0 ⊕ w1 ⊕ 2 · w2 ⊕ 3 · w3

3 · w0 ⊕ w1 ⊕ w2 ⊕ 2 · w3

 ,wi ∈ GF (28)



Diffusion Matrices

Figure 1: Figure inspired from [Jea16]


2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

 ·

w0

w1

w2

w3

 =


2 · w0 ⊕ 3 · w1 ⊕ w2 ⊕ w3

w0 ⊕ 2 · w1 ⊕ 3 · w2 ⊕ w3

w0 ⊕ w1 ⊕ 2 · w2 ⊕ 3 · w3

3 · w0 ⊕ w1 ⊕ w2 ⊕ 2 · w3

 ,wi ∈ GF (28)



From GF (2n) to GF (2)

Multiplication by a fixed element in GF (2n) can be replaced by a
n × n binary matrix multiplication.

w0 = x7x6x5x4x3x2x1x0

irreducible polynomial = p8 + p4 + p3 + p + 1

3× w0 =



0 1 0 0 0 0 0 0
0 1 1 0 0 0 0 0
0 0 1 1 0 0 0 0
1 0 0 1 1 0 0 0
1 0 0 0 1 1 0 0
0 0 0 0 0 1 1 0
1 0 0 0 0 0 1 1
1 0 0 0 0 0 0 1


·



x7

x6

x5

x4

x3

x2

x1

x0





From GF (2n) to GF (2)

Multiplication by a fixed element in GF (2n) can be replaced by a
n × n binary matrix multiplication.

w0 = x7x6x5x4x3x2x1x0

irreducible polynomial = p8 + p4 + p3 + p + 1

3× w0 =



0 1 0 0 0 0 0 0
0 1 1 0 0 0 0 0
0 0 1 1 0 0 0 0
1 0 0 1 1 0 0 0
1 0 0 0 1 1 0 0
0 0 0 0 0 1 1 0
1 0 0 0 0 0 1 1
1 0 0 0 0 0 0 1


·



x7

x6

x5

x4

x3

x2

x1

x0





Number of Computations

Problem

For any given fixed matrix M, how can we minimize the number of
‘⊕’ operations required to compute it ?

Naive counting (d-XOR). Compute each row individually.

Sequential counting (g-XOR). Count the actual number of
sequential XORs required for all the rows.

Example

y0 = x0 ⊕ x1 ⊕ x2

y1 = x1 ⊕ x2 ⊕ x3

t0 = x1 ⊕ x2

y0 = x0 ⊕ t0

y1 = t0 ⊕ x3

d-XOR : 4

g-XOR : 3



Past Works: Paar’s Algorithm [PR97]

Idea: identify most frequent (xi , xj) pairs and use an XOR to
compute xi ⊕ xj . Repeat until done.

x0 x1 x2 x3 x4


1 1 1 1 1
1 1 0 1 1
1 0 1 1 1
0 1 0 0 1
1 0 1 0 1

→

x0 x1 x2 x3 x4 t0


0 1 1 1 0 1
0 1 0 1 0 1
0 0 1 1 0 1
0 1 0 0 1 0
0 0 1 0 0 1

In the case of a tie,

Choose the first one in lexicographical order (Paar1)

Exhaust all equally frequent options (Paar2)



Past Works: Boyar-Peralta’s algorithm [BP10]

S

e1, e2, ..., en

s1, s2, ..., sk

0 0 1 1 0 ... 0

1 0 0 1 0 ... 0

0 0 1 0 0 ... 1

0 1 0 1 0 ... 0

d0

d1

d2

d3

sk+1 = a ⊕ b, a, b ∈ S

1 Choose sk+1 such that d0 + d1 + ...+ dn is minimized

2 L2-norm is used in an event of a tie



Past Works: Masoleh, Taha and Ashmawy’s algorithms [RTA18]

An alternative criteria: Shortest-Dist-First
Instead of using the L1-norm as the criteria, the criteria selects the
pair that is able to reduce as many “nearest” targets as possible.

Suppose the current distance vector to the targets is [3, 4, 2, 2, 4, 5]

Candidate’s distance [2,3,2,2,3,4] [3,4,1,1,4,5]

BP criteria [BP10] X
SDF criteria [RTA18] X



Past Works: Masoleh, Taha and Ashmawy’s algorithms [RTA18]

An alternative criteria: Shortest-Dist-First
Instead of using the L1-norm as the criteria, the criteria selects the
pair that is able to reduce as many “nearest” targets as possible.

Suppose the current distance vector to the targets is [3, 4, 2, 2, 4, 5]

Candidate’s distance [2,3,2,2,3,4] [3,4,1,1,4,5]

BP criteria [BP10] X
SDF criteria [RTA18] X



Randomized Algorithms

Limitations

BP algorithm’s implementation follows a lexicographical order
which did not consider all other pairs that are equally good.

Paar1 suffers from the same issue as BP

Paar2 exhaustively searches through all the possible pairs,
which is costly for matrices that are relatively large

Solution

1 When we have more than one equally good pairs, randomly
pick one of them.

2 Repeat the algorithm k times and pick the best circuit.



Randomized Algorithms

Limitations

BP algorithm’s implementation follows a lexicographical order
which did not consider all other pairs that are equally good.

Paar1 suffers from the same issue as BP

Paar2 exhaustively searches through all the possible pairs,
which is costly for matrices that are relatively large

Solution

1 When we have more than one equally good pairs, randomly
pick one of them.

2 Repeat the algorithm k times and pick the best circuit.



Our Criteria

Relaxing the criteria of having to reduce as many nearest targets as
possible + maintaining the “main path” using L1-norm.

1 Shortlist all pairs such that at least one of the “nearest”
targets is reduced

2 Apply L1-norm criteria to the remaining pairs. (A1)

3 If there is a tie, apply L2-norm criteria. (A2)

Suppose the current distance vector to the targets is [3, 4, 2, 2, 4, 5]

Candidate’s distance [2,3,2,2,3,5] [3,4,1,1,4,5] [3,3,1,2,4,4]

BP criteria [BP10] X
SDF criteria [RTA18] X

Our criteria X



Our Criteria

Relaxing the criteria of having to reduce as many nearest targets as
possible + maintaining the “main path” using L1-norm.

1 Shortlist all pairs such that at least one of the “nearest”
targets is reduced

2 Apply L1-norm criteria to the remaining pairs. (A1)

3 If there is a tie, apply L2-norm criteria. (A2)

Suppose the current distance vector to the targets is [3, 4, 2, 2, 4, 5]

Candidate’s distance [2,3,2,2,3,5] [3,4,1,1,4,5] [3,3,1,2,4,4]

BP criteria [BP10] X
SDF criteria [RTA18] X

Our criteria X



Rationale of our Criteria

Our guess: targets with high distance often cluster together

High distance targets dominate the path from the start

Targets with a lower distance can play a part in the path
towards targets with a higher distance value.

BP

Ours

SDF

O



Local Optimization

Given a circuit, find some ways to reduce the number of XORs.

Yosys [Wol]

Verilog RTL synthesis tool that does some optimization

Our local optimization techniques

...

t1 = x0 ⊕ x1

t2 = x0 ⊕ x2

t3 = x2 ⊕ t1

t4 = x3 ⊕ t2

...

t3

x2t1

x1x0

t3

x1t2

x2x0

t3

x0tk

x2x1



Results (Random Matrices [VSP18])

Density

0.10.20.3 0.4 0.5 0.6 0.7 0.8 0.9

Size
15

16
17

18
19

20

Sa
vi

ng
s

0
1
2
3
4
5
6

Figure 2: Average XOR count
difference (A1 vs BP)

Density

0.10.20.3 0.4 0.5 0.6 0.7 0.8 0.9

Size
15

16
17

18
19

20

Sa
vi

ng
s

0
1
2
3
4
5
6

Figure 3: Average XOR count
difference (A2 vs BP)

Our algorithms outperform BP for random matrices. The
improvement is more obvious with the increase in size.



Results (Random Matrices [VSP18])

Table 1: Percentage of best circuits obtained

Matrix BP Paar1 RPaar1 SDF RNBP A1 A2

Size [BP10] [PR97] [New] [RTA18] [New] [New] [New]

15× 15 25.56 14.44 14.44 70.00 38.89 58.89 66.67

16× 16 21.11 8.89 10.00 61.11 28.89 53.33 73.33

17× 17 17.78 11.11 11.11 62.22 26.67 53.33 72.22

18× 18 15.56 8.89 11.11 41.11 31.11 52.22 85.56

19× 19 14.44 11.11 11.11 32.22 26.67 54.44 74.44

20× 20 12.22 11.11 11.11 25.56 23.33 58.89 87.78



Results (Matrices from [DL18])

Table 2: XOR count of 16× 16 matrices

Matrix
Instantiation Const. BP Paar2 RSDF RNBP A1 A2

(α, β, γ) [BP10] [PR97] [RTA18] [DL18] [New] [New] [New]

M9,3
4,5 (A4,−,−) 35 38 45 36 37 39 37

M9,3
4,5 (A−1

4 36 40 46 38 39 38 35

M8,3
4,6 (A4,−,−) 35 38 45 37 38 39 38

M8,3
4,6 (A−1

4 35 40 46 36 38 38 35

M8,3
4,5 (A−1

4 ,A4,A
−2
4 ) 36 40 47 40 39 38 38

M9,4
4,4 (A4,−,−) 39 41 47 41 40 39 39

M9,3
4,4 (A−1

4 ,A4,A
−2
4 ) 40 40 43 40 39 41 41

M8,4
4,4 (A4,−,−) 38 40 43 41 39 40 39

M8,4′

4,4 (A4,−,−) 38 43 41 38 41 39 38

M8,4′′

4,4 (A4,−,−) 37 40 43 40 40 40 39

M9,5
4,3 (A4,−,−) 41 40 43 41 40 41 40

M9,5
4,3 (A−1

4 ,−,−) 41 43 44 44 41 41 40



Results (Matrices from [DL18])

Table 3: XOR count of 32× 32 matrices

Matrix
Instantiation Const. BP Paar2 RSDF RNBP A1 A2

(α, β, γ) [DL18] [BP10] [PR97] [RTA18] [New] [New] [New]

M9,3
4,5 (A8,−,−) 67 74 88 74 67 77 69

M9,3
4,5 (A−1

8 ,−,−) 67 71 89 79 69 78 68

M8,3
4,6 (A8,−,−) 67 74 88 71 67 76 69

M8,3
4,6 (A−1

8 ,−,−) 67 71 89 78 69 78 68

M8,3
4,5 (A−1

8 ,A8,A
−2
8 ) 68 75 77 81 68 68 68

M9,4
4,4 (A8,−,−) 76 77 92 84 76 76 76

M9,3
4,4 (A−1

8 ,A8,A
2
8) 76 76 83 79 75 76 76

M8,4
4,4 (A8,−,−) 70 72 74 77 70 70 70

M8,4′

4,4 (A8,−,−) 70 81 79 76 76 72 71

M8,4′′

4,4 (A8,−,−) 69 72 85 77 69 76 70

M9,5
4,3 (A8,−,−) 77 76 86 82 76 76 76

M9,5
4,3 (A−1

8 ,−,−) 77 79 86 85 77 77 77



Results (AES)

Matrix
BP RSDF RNBP A1 A2

[BP10] [RTA18] [New] [New] [New]

AES 97
102 95 95 94

MixCol [KLSW17]

AES
155 162 153 153 152

InvMixCol

Very recently, [Max19, XZL+20] further improved our result for
AES matrix to 92 XORs



Conclusion and Future Works

A1 and A2 criteria perform the best when the densities of the
matrices are about 0.4-0.5.

However, our algorithm is BP-like (like [RTA18]) which makes
it too costly if the matrix grows very large

More techniques in local optimization may lead to even lower
XOR count.

The average (XOR) cost of implementing a matrix with
density 0.9 is actually less than one with a density of 0.2.



Conclusion and Future Works

A1 and A2 criteria perform the best when the densities of the
matrices are about 0.4-0.5.

However, our algorithm is BP-like (like [RTA18]) which makes
it too costly if the matrix grows very large

More techniques in local optimization may lead to even lower
XOR count.

The average (XOR) cost of implementing a matrix with
density 0.9 is actually less than one with a density of 0.2.



Conclusion and Future Works

A1 and A2 criteria perform the best when the densities of the
matrices are about 0.4-0.5.

However, our algorithm is BP-like (like [RTA18]) which makes
it too costly if the matrix grows very large

More techniques in local optimization may lead to even lower
XOR count.

The average (XOR) cost of implementing a matrix with
density 0.9 is actually less than one with a density of 0.2.



Conclusion and Future Works

A1 and A2 criteria perform the best when the densities of the
matrices are about 0.4-0.5.

However, our algorithm is BP-like (like [RTA18]) which makes
it too costly if the matrix grows very large

More techniques in local optimization may lead to even lower
XOR count.

The average (XOR) cost of implementing a matrix with
density 0.9 is actually less than one with a density of 0.2.



References I

Joan Boyar and René Peralta.
A New Combinational Logic Minimization Technique with Applications to
Cryptology.
In Paola Festa, editor, Experimental Algorithms, 9th International Symposium,
SEA 2010, Ischia Island, Naples, Italy, May 20-22, 2010. Proceedings, volume
6049 of Lecture Notes in Computer Science, pages 178–189. Springer, 2010.

Sébastien Duval and Gaëtan Leurent.
MDS Matrices with Lightweight Circuits.
IACR Trans. Symmetric Cryptol., 2018(2):48–78, 2018.

Jérémy Jean.
TikZ for Cryptographers.
https://www.iacr.org/authors/tikz/, 2016.

Thorsten Kranz, Gregor Leander, Ko Stoffelen, and Friedrich Wiemer.
Shorter Linear Straight-Line Programs for MDS Matrices.
IACR Trans. Symmetric Cryptol., 2017(4):188–211, 2017.

Alexander Maximov.
AES MixColumn with 92 XOR gates.
IACR Cryptology ePrint Archive, 2019:833, 2019.

https://www.iacr.org/authors/tikz/


References II

Christof Paar and Martin Rosner.
Comparison of arithmetic architectures for Reed-Solomon decoders in
reconfigurable hardware.
In 5th IEEE Symposium on Field-Programmable Custom Computing Machines
(FCCM ’97), 16-18 April 1997, Napa Valley, CA, USA, pages 219–225. IEEE
Computer Society, 1997.

Arash Reyhani-Masoleh, Mostafa M. I. Taha, and Doaa Ashmawy.
Smashing the Implementation Records of AES S-box.
IACR Trans. Cryptogr. Hardw. Embed. Syst., 2018(2):298–336, 2018.

Andrea Visconti, Chiara Valentina Schiavo, and René Peralta.
Improved upper bounds for the expected circuit complexity of dense systems of
linear equations over GF(2).
Inf. Process. Lett., 137:1–5, 2018.

Clifford Wolf.
Yosys open synthesis suite.
http://www.clifford.at/yosys/.

Zejun Xiang, Xiangyong Zeng, Da Lin, Zhenzhen Bao, and Shasha Zhang.
Optimizing implementations of linear layers.
IACR Trans. Symmetric Cryptol., 2020(2):120–145, 2020.

http://www.clifford.at/yosys/

