The MALICIOUS Framework:

Embedding Backdoors into Tweakable Block Ciphers

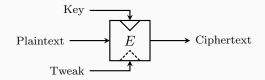
Thomas Peyrin, <u>Haoyang Wang</u> August 2020

School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore

Introduction

- Most of time, backdoors of an encryption system refer to those weakness intentionally created in the implementation level, such as protocols of key management and key escrow.
- The other type is the cryptographic backdoor, which is embedded during the design phase of a cryptographic algorithm.

Known examples:


- Dual_EC_DBRG.
- The suspicious S-box of Kuznyechik and Streebog.

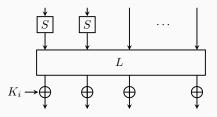
Limited number of works focus on the research of cryptographic backdoors. Almost all designs were either broken or can't provide solid security proof.

Our contributions

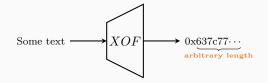
- We propose the **MALICIOUS** framework to embed backdoors into tweakable block ciphers.
- We show that our backdoor is efficient.
- We provide a concrete security bound for our backdoor.
- We provide a cipher example LowMC-M, and give proofs of its backdoor security and classical cipher security.

The MALICIOUS Framework

A tweakable block cipher accepts an additional input, so-called **tweak**, in order to select the permutation computed by the cipher even if the key is fixed.

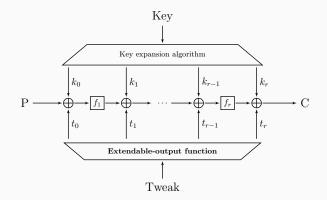

- No need to keep the tweak secret.
- An attacker could even have full control over the tweak, i.e., choosing whatever value he wants.

Substitution-Permutation Network (SPN)


SPN is a method of designing iterated block ciphers, an SPN round consists of a linear layer and a non-linear layer.

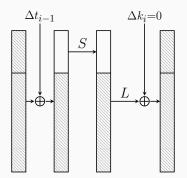
Partial non-linear layer: the non-linear layer (S-boxes) is only applied to a subpart of the internal state.

• Typical ciphers: ZORRO, LowMC.


Extendable-output functions

An extendable-output function (XOF) is a generalization of a hash function which maps an arbitrary length input to an arbitrary length output.

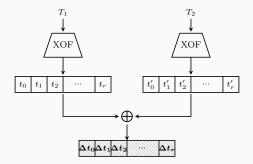
- Security properties: collision resistance, preimage resistance and second preimage resistance.
- Typical algorithms: SHAKE128, SHAKE256.


The MALICIOUS framework

The MALICIOUS construction is a framework to build a key-alternating **tweakable block cipher** with the following special features:

- The non-linear layer of each round function f_i is partial.
- The sub-tweaks are obtained from the original tweak T by an XOF: XOF(T) = $t_0 ||t_1 \cdots ||t_r$.

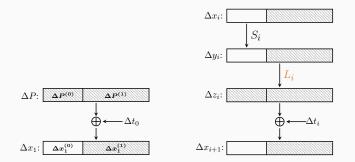
The backdoor


Related-tweak differential characteristic with probability 1

- Difference of the non-linear part is canceled by the sub-tweak addition.
- The differential characteristic is built with a secret tweak pair, we call it malicious tweak pair.
- The attack using the backdoor is under the chosen-tweak scenario.

How to build the backdoor?

Step 1


- Choose a pair of tweaks and keep it secret.
- Compute the corresponding sub-tweak differences by the XOF.

How to build the backdoor?

Step 2

- Select a plaintext difference ΔP , satisfying $\Delta P^{(0)} = \Delta t_0^{(0)}$ such that $\Delta x_1^{(0)} = 0$.
- Generate the differential characteristic round by round, by selecting an appropriate linear layer L_i of each round, satisfying $L_i(\Delta y_i)^{(0)} = \Delta t_i^{(0)}$ such that $\Delta x_{i+1}^{(0)} = 0$.

Note: It is possible to embed multiple differential characteristics.

The Backdoor Security

Definition (Target-difference resistance)

A hash function H is target-difference resistant if it is hard to find two inputs x and y such that $H(x) \oplus H(y) = \Delta$, where Δ is a non-zero constant.

The complexity is the same as the classical collision resistance (where $\Delta = 0$), that is the birthday bound $O(2^{n/2})$.

Security strength:

- SHAKE128: min (n/2, 128) bits
- SHAKE256: min (n/2, 256) bits

• Finding the malicious tweak pair is difficult even if the differential characteristic is public known. The complexity is the target-difference resistance of the XOF used in the framework.

 $XOF(T_1) \oplus XOF(T_2) = \Delta t_0 ||\Delta t_1|| \cdots ||\Delta t_r|$

• The complexity will be at most $O(2^{128})$ for SHAKE128 and $O(2^{256})$ for SHAKE256.

1. Actually, as we did not fix the tweak length, there might be other tweak pairs satisfying the requirement.

 $XOF(T_1') \oplus XOF(T_2') = \Delta t_0 ||\Delta t_1|| \cdots ||\Delta t_r|$

2. Furthermore, it is also possible that there is a suitable tweak pair for a randomly given differential characteristic, that is, the value of $\Delta t_0 ||\Delta t_1|| \cdots ||\Delta t_r$ is not fixed.

These tweak pairs imply new backdoors, which are not intentionally embedded by us. However, finding these backdoors is still as hard as finding the originally embedded backdoor.

An Instantiation of MALICIOUS: LowMC-M

LowMC-M

LowMC-M

A family of tweakable block ciphers derived from the block cipher LowMC.

- The size of the non-linear layer ${\boldsymbol{S}}$ can be set arbitrarily.
- The linear layer L_i is an invertible $n \times n$ binary matrix which can be chosen randomly, but has to be customized if a backdoor is to be embedded.
- The tweak schedule uses SHAKE128 or SHAKE256.

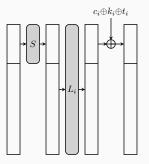


Figure 1: A single round of LowMC-M

LowMC-M has the following security properties:

- **Undetectable.** The attacker is unable to detect whether an instance of LowMC-M is embedded with backdoors or not.
- **Undiscoverable.** It is computationally difficult for the attacker to recover the backdoors (due to the target-difference resistance of the XOF).
- **Traceable.** If the backdoor is used in an attack, it will reveal the information of the backdoor (since it is chosen-tweak chosen-plaintext attack).

Attacks without using the tweak

The security of LowMC-M can be reduced to the security of LowMC which remains strong currently.

- Without considering the tweak, LowMC-M is an equivalent representation of LowMC.
- Even if a LowMC-M instance is backdoored, we show that its customized linear layer matrices can be considered as independently and randomly chosen from the view of the attacker.

Attacks based on the tweak

Since the tweak schedule is an XOF, the attacker can't control its output. Thus, the tweak can't provide additional advantage for the attacker. **Future Works**

- Can we use the framework to build other backdoored cryptographic algorithms? Such as hash functions and MACs.
- Is it possible that other cryptanalysis techniques than just a plain differential attack can be used in the framework?
- How to make the backdoored cipher untraceable?

Thank you!